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Using the field-theoretical formalism, nonequilibrium thermodynamics is discussed where the volume
V (2) is changing with time. The time-dependent boundary condition on the wave function is handled by
introducing the time-independent mode variables, thus leading to the time-independent Fock space. The
correct representation of the second quantized Hamiltonian is derived which depends explicitly on both
V(¢) and V(¢). This leads to two kinds of force operators, X{(z) (pressure) and an extra term X,(¢). The
adiabatic expansion of the increase AE(¢) of internal energy is performed and it is shown that X,(¢) has
no effect up to the leading nonequilibrium correction. The resulting form of AE(¢) ensures that the
correction is positive, thus proving the principle of maximum-minimum work.

PACS number(s): 05.70.Ln, 11.10.—z, 03.70.+k

I. INTRODUCTION

Nonequilibrium thermodynamics based on the field-
theoretical formulation can be a first-principles study of
the dynamical phenomenon of the macroscopic system
and has been widely discussed along this line. However,
most of the investigations concern the evaluation of ki-
netic coefficients and the nonequilibrium thermodynamic
relation itself has been little studied. One of the reasons
for this is that the thermodynamic relation involves the
energy, free energy, or thermodynamic potentials which
are the generating functional of various Green’s functions
and the field-theoretical development of the generating
functional has not been thoroughly achieved.

As a first step the internal energy of the system is stud-
ied in this paper as a function of time in the presence of
some time-dependent external parameters. As a parame-
ter we focus on the volume of the system, which is as-
sumed to be changing slowly with time.

The purpose of the present paper is thus to derive an
explicit expression of the first nonequilibrium correction,
due to volume change, to the equilibrium thermodynamic
formula for the increase dE in the energy of the system E.
Let us recall here the general expression for dE, with ob-
vious notations,

dE=dQ—pdV+udN—M-dH+ - (1.1)

As is well known, Eq. (1.1) is the change of energy when
the increase on the right-hand side is due to the process
which is infinitely slow, i.e., adiabatic, in the sense that at
each instant of time the system can be assumed to be in
the equilibrium state. On the right-hand side of (1.1), the
term dQ or pdN cannot be solely expressed as a change
of the parameters in the Hamiltonian of the system.
They are also closely related to the state of the system
and environment. The terms —M-dH, on the other
hand, comes from the parameter (magnetic field H)
change appearing in the Hamiltonian of the system,
whereas —p dV is due to the change of the boundary con-
dition imposed on the system. Therefore various terms
on the right-hand side of (1.1) have different origins and
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they have to be studied separately.

The first nonadiabatic correction to (1.1) has been stud-
ied in general terms in Ref. [1] in the case where the pro-
cess is induced by the time-dependent external parame-
ters a;(t) (i=1,2,...,I) contained in the Hamiltonian.
Here the adiabatic expansion is defined to be the one in
powers of the time derivative &;(¢)=da;(¢t)/dt; expan-
sion in terms of the number of dots is called the adiabatic
expansion. The system is assumed to be in the equilibri-
um at ¢t =— o0 and is brought into the nonequilibrium
state by ;(¢). Then the result of Ref. [1] is that, up to
the lowest correction term,

AE(t)=E(t)—E,
=3 [ drxia),p)a )

+ 2 f_twdt’Yij(a(t'),ﬁ')('Z,-(t')dj(t') , (1.2)
"J

or

dE(1)= 3 X;(a(1),B)da, (1)

+ X Y(aln),Bla;(t)da(t) . (1.3)
ij

Here E(¢) is the energy at time t, E,=E(— o), B(B') is
the equilibrium temperature at time ¢(¢’). Note that X,
or Y;; is the average taken over the equilibrium state in
which the system lies at each instant of time if the pro-
cess is adiabatic. Explicit expressions of X; or Y;; have
been given in Ref. [1] but the important conclusion is
that Y;; is a positive-definite matrix. The positivity of Y;
leads to the increase in internal energy which is known as
the principle of maximum-minimum work done by the
external system. The principle states that the work done
by the system (or by the external environment) to the en-
vironment (or to the system) takes the maximum (or
minimum) value when the process is adiabatic. The
above statement can be translated into the one about the
change of the internal energy of the system, of course.
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Note that this principle can be a basis for the proof of the
second law of thermodynamics.

The nonadiabatic correction to —p dV is discussed
below. It requires a substantial amount of work, as will
become clear in what follows. As has been pointed out,
in order to study the case of time-dependent volume
V (t), we have to work with the time-dependent boundary
conditions. If the boundary is expressed as the infinite
potential wall, then as the wall moves the Hilbert space
itself changes and we are faced with difficulty from the
start in formulating the problem. The difficulty is avoid-
ed in Sec. II by introducing, instead of a field operator at
space point x, the coordinate corresponding to the mode
index n i which is time independent. Thus we are led to
the time-independent Fock space and the second quan-
tized Hamiltonian is defined on this space. The main re-
sults of our investigation are summarized below.

(1) By introducing the mode variable, the second quan-
tized Hamiltonian is derived in (2.20), which contains, be-
sides V' (), the term explicitly depending on ¥ (¢).

(2) Up to the lowest-order nonequilibrium correction,
AE (t) is given in (4.13), which is written in terms of the
normal term X9(¢) of (3.14) and the extra term X,(¢)
defined in (3.15). However, it turns out that the term
X,(t) has no contribution to AE (¢) to this order (see Sec.
V).

Our conclusion is therefore that, up to the order con-
sidered,

AE(t)=—pdV+YVdV ,
Y=>0,

(1.4)
(1.5)

where Y is given in (6.12), which is written in terms of
X9(¢) only. Then the principle of maximum-minimum
work for the volume change is proved from first princi-
ples. Our derivation in this paper is rather formal but the
explicit diagrammatical calculation of Y can be done
once the Hamiltonian of the system is known.

The importance of the discussion on the nonequilibri-
um correction to the equilibrium formula need not be
stressed here again since it is a starting point of the whole
formalism of the nonequilibrium thermodynamics.

II. SECOND QUANTIZATION OF SCHRODINGER
EQUATION WITH TIME-DEPENDENT BOUNDARY

We consider the interacting spinless N-particle system
confined in a volume whose size is changing in time. The
Hamiltonian is assumed to take the form

N g N
ﬂ= 2 T(Xk)+5‘ 2 ‘V(xk,x,) N (21)
k=1

k#1(=1)

where T(x; )= —(#*/2m)V2 is the kinetic energy and V
is the time-independent potential energy of the interac-
tion between two particles with g the coupling constant.
The variable x; denotes the spatial coordinate of the kth
particle. The following discussion hold for general mul-
tiparticle interactions V(xy,x;,...,X,,) but we restrict
ourselves to (2.1) just for simplicity. Spin variables are
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also easily incorporated. The Schrodinger equation is
given by

iﬁ%‘l’(xl ce XN,t)z_ﬂ\y(XI M XN,t) ’

(2.2)
with appropriate boundary conditions [2].

To deal with varying volume V (¢) we take a standpoint
that the system is enclosed by perfectly rigid walls that
move to cause the change in volume. In this case the
many-particle Schrodinger equation should be solved
with time-dependent boundary conditions [3]. Namely,
the N-body wave function W satisfies

W(x, - Xy,t)=0 (2.3)

if any one of x is not included in the volume V' (¢). Since
the introduction of mode variables which are time in-
dependent is essential in our argument, we reproduce in
what follows necessary steps on the pathway to the
second quantized form of (2.2) and (2.3). Another
method of second quantization, which is much more con-
cise than the presentation below, is given in Appendix A.

To solve the Schrodinger equation with time-
dependent boundary conditions, we first expand ¥ in
terms of a complete set of function ¥(x,?) at any instant
of time that satisfies the boundary condition. The choice
of the complete set is not unique, of course, but we re-
strict ourselves below to the following bases which are
particularly convenient:

3 172

ve(x0=TI

i=1

njﬂ'xj

L;(z)

(=123 n;=1,2,...

2

L(t)

(2.4)

,OO),

where E =(n,n,,n;), x=(x,,x,,x3), and we have as-
sumed that the system is in a big box with sides L;(#)
(i =1,2,3). The expansion of W(x, * - * xy,?) is thus given
by

\I’(xl . 'xN,t)

= 2

C(E} + Efpytiby, (xp,0) - ., (xy,1) .
E!,...,E} ! v

(2.5)

We call this expansion the mode expansion and ¥ the
mode function. The important fact here is that the mode
is specified by the time-dependent index n; as has been
stressed in the Introduction. We sometimes call E or n;
themselves the mode (indices) in what follows.

We put this expression into (2.2), multiply by

¢El(x1,t) "+ ¥g, (xy,1), and integrate over X, * " - Xy in-

side V(t). Then we get a set of equations for the
coefficients C’s:



1488 K. OKUMURA AND R. FUKUDA 47

aC(El"'EN,t) N a
i# -3 <Ek T—itnd W> C(E, Ey WEy4,  Ey,t)
ot Py ot :
N .
+& S S S(EE|VIWW'),C(E, Ey_\WE+ E_,WE; ., Ey,t), (2.6)
2 k#*l(=1) W W'
where, using an over dot for the time derivative,
<E T—i#d W) =<E T—inp-3 W> = ["axyg (x,0 | Tx)—inL | gy ix,0) 2.7)
k ot : k v |/, B at | T '
(EENVIWW), = [T ax [T dx'py (x, 000 (5, 0V (5K W (5,0 (x, 1) . (2.8)

There are some important differences here compared
with the case of the time-independent boundary condi-
tion. Indeed, we notice that the mode function depends
on ¢t leading to the appearance of the term
(E,|i#id/3t)|W),. But the concept of mode itself is in-
dependent of time.

We have to incorporate the statistics of particles. For
simplicity we temporarily restrict our argument to nonin-
teracting bosons, but a similar discussion applies for in-
teracting bosons or fermions. The wave function V¥ is
symmetric under the interchange of the coordinates.
Then the symmetry of C under interchange of mode in-

dices follows, namely,
C("'E,»"'Ej"',t)=C("'Ej"'E,-“‘,t). (2.9)

We arrange all the levels (specified by three-component
vectors n) available for E; in an appropriate order and

[

call these levels state 1, state 2, etc. Suppose that, in any

one of the sets (E| - - - Ey), (E] - - - Ey), ..., the state 1
occurs n, times, the state 2 occurs n, times, and so on.
Then we notice that, even if (E,-::Ey),
(Ey-""EN)y..., are different from each other,

coefficients C for all these sets have the same value
C(11---22---,t), where there are n, ones and n, twos,
etc., which we call C(n,n, - - n,t).

Introducing the normalized coefficient f,
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flrn, - ny b= |—=>N
"2 =’ nylnyt - n !

XC(nyn, - n,,t), (2.10)

(2.6) can be written as follows (for the noninteracting
case),

1
of(nn, -+ n,t)
i# /ny zat =§<i ‘T—iﬁ—aa? i>rn,~f(n1n2-~'nw,t)
+ §<1 ‘T—iﬁ% j>t\/n,-(nj+l)f(nl e R Th S RERE TR 2.11)
i#]
f
Here the summation over i or j implies the summation state vector
over the states. —
Let us introduce time-independent operators that satis- IW(1)) = S flunyng,dinnyong).
fy Y DY
ti he relati
[@,d]:si’j, [¢[,¢j]=[¢j,¢}]=0 , 2.12) Noting the relation
' 2|0t ceepl—1---pn'
where i, j corresponds to the mode of expansion (2.5). [(r]+Dnj][n ni+1 nj—1 n)
The eigenstate |n;) for the number operator @], be- =<p}L(pj|n'1n'2 cenl) L (215
comes
+ we finally arrive at
@ip;ln;)=n;ln;) (n;=0,1,2,..., ). (2.13)
Then the time-independent abstract state vector is defined iﬁél—wgf—)) =3 (i T— iﬁga; j> (p:»rcpj |w(e)) . (2.16)
as b t

Inge) .

We now rewrite (2.11) as the equation of motion for the

|n1n2---nw)=|n1)|n2>--- (2.14)

This is the second quantized Schrdédinger equation for a
free boson system with a moving wall. The case where
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the interaction potential YV is present and where the par-
ticles are fermions can be discussed in a similar manner.
We find that a set of equations (2.6) with the statistics of
particles included is equivalent to the following second
quantized equation:

2 W) =H (WD) 017
— . - a . T
Hi=3 (i T-if 2 |j) ole,
ij ot ¢
+§ S (ijlVIkD, ololepr (2.18)
i,j,k,l
[¢i)¢;]i=8i,j7 [‘Pi,@j]i:[(p;r,(p}]i:o , (2.19)

where [, ], denotes the anticommutator for a fermion
and [, ]_ the commutator for a boson. We stress here
again that the operators and abstract space (Hilbert
space) have been introduced time-independently.

Now we specify the system to be considered. For this
purpose the mode function (2.4) is employed with L, and
L, independent of time for simplicity. Keeping in mind
that (i[(3/dt)|j), becomes the integration of
¥;(x,2)3¢;(x,2) /9, which is the products of tri-
gonometric functions inside V' (t), we get

H()=H(V(1),V(1))

L V(1)
= z ﬁwn(t)¢>j,(pn"lﬁ ( 2 fnn’¢;rl(pn'
2 Vi) &

+§ > <nlnzlcv|n4“3>x(le1‘1’12?’"3?’:14 , (2.20)
ny, .. ’n4
where
o n=3 L [T 2.21
j=1 J
—n' 2nn;
—(—1yn M 2717
S =(—1) ln%—n?(l Snln;)anzn;6n3n’3 . (2.22)

We have also recovered the mode index n=(n,n,,n;)
for E (or i). The operator <p;rl or @, does not depend on
time so that time-independent Hamiltonian contains
t only through V(¢) and V(t) because the potential YV is
assumed to be time independent. The term proportional
to V(¢), which is Hermitian, of course, because f,,. is an
antisymmetric matrix, describes the effect of mixing
among different modes brought about by the moving
wall.

The second quantized Hamiltonian given by (2.20) is
our first result of the present paper describing the system
confined in a box with sides L,(¢),L,,L;.

III. EXPRESSION FOR INCREASE IN ENERGY

Let us assume that the system described by the Hamil-
tonian (2.20) is in a thermal equilibrium at initial time ¢;
and then evolves into a nonequilibrium state following
the Schrodinger equation under the time-dependent
Hamiltonian (2.20). For such a case we derive below the
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expression for the increase in energy at time ¢t [AE (t)]
compared with that of the initial time.

First, define the time evolution operator for the state in
Schrodinger representation. Using the time order opera-
tion, it is given by

Ul,i)=T exp |~ [ 'ds H(V(5), V(5)) (3.1)
.

Differentiation the Hamiltonian in the Heisenberg pic-
ture with ¢ we get

+0H (1)

d
Et—U(t,t,)TH(t)U(t,t,)zU(t,t,) 5 Ut . (2
This leads us, by integration, to the formula
Ut )T H()U(t,1;)=H (1))
4 ’ ’ T
+f'1dt Ut',t)
xa—fg—t(%—)U(t',z,) . (33)

Now the expectation value of any operator O is defined as
(0),=Trlp,U(t,t)'0U(1,1,)], 3.4)

where p; is the initial equilibrium density matrix. We
choose in what follows p; which represents the grand
canonical ensemble.

—BH —BH
pr=e P /e r,

HI=H(t1)_ﬂN .

(3.5)
(3.6)

Here we have assumed V( t;)=0, N is the number opera-
tor, T =(kfB)"! denotes the initial temperature, and p is
the chemical potential.

Operator O in (3.4) can explicitly depend on ¢, which is
called kinematical time development [for example, the ex-
plicit dependence on V' (¢) and V(¢) if O is the Hamiltoni-
an]. The dynamical time evolution, on the other hand, is
the one caused by the Hamiltonian.

The increase in energy AE (t) is given by using (3.3) as

AE(=(H(1),—(H()), (3.7
=ft:dt’Tr p,U(t’,t,)Tagi,tI) Ut',t,) (3.8)
=ft:dt'Tr{pIU(t',t1)T

X[ V("X (t)+V ()X, (t')]
XU((t',t)}, (3.9
where
Xl(t):a—H(%(Vt();—)V(-tﬂ , (3.10)
X2<t)=91“%;‘(’;)"/——(—’ﬁ . 3.11)

The operator X is related to the usual pressure operator,
while X, is an operator which appears because H depends
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explicitly on V. It is one of our main purposes in this pa-
per to prove that X, has no effect up to next leading term
in the adiabatic expansion (see Sec. VI).

The similar discussion to get the expression (3.8) or
(3.9) has already been made in Ref. [1] by another ap-
proach. The crucial difference from the corresponding
expression in Ref. [1] is the appearance of the term X,.
This is the operator corresponding to the force exerted on
the system by the external parameter if it has non-
vanishing second time derivative V.

Before closing this section we show below explicit
forms of X,(t) and X,(¢). They are the force operators
conjugate to V and ¥, respectively, and are given as fol-
lows:

(¢ > 3V (1) PnPn
+& acvnln2n4n3 T _'_
2 2 v PnOmPnn,
""" (3.12)
[ e 3 fuhon (3.13)
sx?m——::%xz(z) , (3.14)

QH(V(t"),V(t"))
av(t')

=H(V(t'),0)+V(t")X,(t

H(V(s),V(s))=H(V(¢'),V(t')+

The U (¢',t;) becomes

M
Ut t))=T [ Uls;,t;—y)

i=1

=TI‘[ ‘1-—AtH(t)]
i=1
M
=[1 1———AtH(V( ’),0)
M i
+ > 1——At H(V(t'),0)
k=1 #i

M
IT
i=k+1
k—
H

‘l————AtH(V( "),0)
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ifi
X,(1)=—375 mznlf,,nw:r,qn,,' . (3.15)
Here the definition of X{(¢) and the simplified notation
may be clear. The conventional operator of pressure is
X9(2), as will be shown below. Both X,(¢) and X,(z) are

Hermitian operators, of course.

IV. ADIABATIC EXPANSION

Now we concentrate on the adiabatic expansion of
AE (t) assuming that the time variation of ¥ (z) is small.
For this purpose we expand AE (¢) according to the total
number of dots (time derivatives) in each term of
expansmn The ﬁrst few terms are given by V, V,
(V,(V)), (V,VV,(V)?) etc.

In the expression (3.9), U(t’,¢;) is seen to depend on
V(s) and ¥(s) in the interval t; <s <t. We expand V(s)
and V(s) in U(t',t;) as follows:

V(S)=V()+ V(@' s —t' )+ -,
Vis)=V(t')+ -+

(4.1)
(4.2)

Of course, we can take another expansion scheme, but in
what follows we will see that the above choice turns
out to be particularly suited for our purpose in this paper.

Up to the order V, the expansion of H(V (s), ¥(s)) in
U(t',t;)is given as

where we have discretized the time interval into M steps of size At.

Let us introduce

U'(t,,t,)=exp —é(t1 —t,)H(V(t'),0)

which realizes the time evolution with volume fixed to the value ¥ (¢'). Thus we get

' —— TTI 4! _L t PETTI( 1 400\ T/ ' "__
Ut t)=U"(t',t;) ﬁftldt U'(e', "Wt {(t" —t)X0(¢’

V(') s —t")+ -+
"Ws—t")+ --- (4.3)
-——;—At V() {(t, —t)X(t" )+ X, (2"}
-, 4.4)
4.5)
VX, U (" U () + - (4.6)
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wpere tl}g relation U'(t",t;)=U"'(¢",t')U'(¢',t,) has been used. From (3.9), (3.14), (3.15), and (4.6), up to the order
(V(t')2, ¥(t")), the following expression for AE (t) is obtained:

AE(n)= ['dt' V(e Tr{p,U'(r',t)TX(eH U (2,1}
1

+ftdt'if/(t')zft'dt”Tr{p,U'(t’,t,)*[U’(t’,t”)((t”—t')X?(t’)+X2(t’))U’(t’,t”), X0 U (t',t,)}
t # t

Trip, U'(t',t) X, (e U (t',1))) . 4.7)

' .. V(t')?
+ | dt’ | V(') —
f’l () Vi(t")
[
From now on we taken ;= — o in order to discuss the

adiabatic expansion where the time derivative of V' (¢') is
assumed to be a small quantity. This is natural: in order
to get finite energy increase AE, the infinite time interval
is required because the rate of the change in volume V is
very slow.

Let us discuss the operator

Tr{p, U'(t',t)" - U'(¢',1)))

appearing in the above formula. The time evolution
operator U'(t',t;) is the adiabatic limit of U (¢’,¢;) in the
sense that we have made all the derivatives of V' (¢') go to
zero [see (4.1)—(4.5)]. The expectation value in the form

Trip, U'(t',t))TOU (')} =Tr{U'(¢',1;)p, U'(¢",1,)10)}

can be interpreted as a thermal equilibrium average at
time ', Tr{p.,(+')O}. The state characterized by p,,(t’)
is obtained from p; by an adiabatic change effected by U’.
This is more clearly seen by the following argument.

The adiabatic expansion defined in a more precise
manner is the following:
Vs)—=V(t)=als)

=e®al(s)

=eS[a(t)+at'Ns—t')+ -1, (4.8)
where € is a positive infinitesimal quantity which is taken

to be zero after all the calculations. a(s) and a(s) can be
rewritten by

als)=e a(t' )+ e a(t' (s —t")+ -+, (4.9)
a(s)=V(s)=eS q(t' )+ -+ . (4.10)

Expanding U(t’,t;) according to the order of time
derivative of not ¥ but «a, then U’(t’,¢;) becomes

U'(t',t;)=T exp —%f}t'ds H(V(t;)+e s "a(t’),0) ] .
1
4.11)

J

AE ()= [dt' V(e ) (X3(t')) oqp
I

Remembering the fact that V(z,)+e* ~")a(t’) changes
its value from V' (¢;) to V' (¢') at an infinitely slow rate as ¢
evolves from ¢; (=— o) to ¢’, we are allowed to interpret
U’(t',t;) as the adiabatic limit of U(t’,¢;). Therefore by
a standard argument (see, for example, Ref. [1]) about the
adiabatic theorem, p.,(¢’) represents an equilibrium state
characterized by parameters which take different values
from that characterizing p,. Here p.q(2’) corresponds to
the grand canonical distribution of certain temperature
T'=(kf')”! and chemical potential u’ into which the
system has developed through the adiabatic change of the
external parameter V(¢). The precise discussion of p.q(z')
is given in Sec. V.

The above observation about p.q(’) will become more
transparent if we rewrite (3.4) as

(0),=Tr{U(1,1,)p,U(1,1,)'0} (4.12)

from the start and assume that we trace again the process
of preceding adiabatic expansion of U (t,¢;). Then we ar-
rive at the same result (4.7) but in this case U'(¢’,t;) ap-
pears in the combination U’'(¢',t;)p,U’(t',¢; ), which is
the density matrix at time ¢’. In this form the state
represented by the density matrix changes adiabatically
which allows us to apply the adiabatic theorem to our re-
sult. Although this type of argument based on (4.12) is a
simple repetition of (4.7), which is obtained in the Heisen-
berg representation (operator evolves in time), it is given
in the Schrodinger picture and we recall here that the
adiabatic theorem is wusually formulated in the
Schrodinger representation since it is a statement about
the change of the levels of Hamiltonian.

Now employing the notation

Tr{e_B'[H( V(t'),0)—u'N] . .. }
Tre ~BLHV(1'),0)—p'N] ’

(oo Veqer=

we rewrite (4.7) as

+ft;dt’éI'/(t')zft:dt”{(t"——t’))(’,'l(t"——t', Ve +xy e =t V()

.. ’ 12
(- L l(Xz(t’))eq,' .

t
+ ’
S V)

(4.13)
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Here we have defined

X =, VN =([23"), Rt D g »

N (4.14)
X’2’1(t”_t” V(t'))=<[X2(t”)’j>(l)(t/)])eqt’ ’
where
X)=U"(s,t") X (U (s,1") . 4.15)

In (4.13), at every instant ¢’ of the time integration, all
the averages are taken at equilibrium thermal state which
is obtained by an infinitely slow change of the volume
V(s) from s =t; to t’. We arrived at this picture because
we have chosen the expansion scheme (4.1) and (4.2).
Equation (4.13) is our main result of the paper. The
first line describes the adiabatic limit, that is, the equilib-
rium thermodynamics, while the second and third lines
represent the leading nonequilibrium correction to the

V. EQUILIBRIUM THERMODYNAMICS

In this section we examine the first line of (4.13), or

AE(:)=—fVV(:’)de<V) , (5.1)

where —p( V(t'))=(X?(t'))eq,'. The expression p (V) is
interpreted as the pressure of the system. Indeed noting
that X9(¢£)=03H(V (¢),0)/dV (1), we see that

_1_0
B av(t')

—p(V)= ln{Tre-B’[H(V(t’),0)—y’N]}

w, T

__a0
vt

(5.2)

’
w, T

where () is the thermodynamic potential. The calcula-
tion of Q is to be done for the system described by the

equilibrium thermodynamics. time-independent Hamiltonian H(V(¢'),0) for fixed
volume V(t'),
J
H,0= ["dxg'n) |- EX o+ & [ ax [ dy ¢lxg! (1)V(x—y)plygix) (5.3)
, ¢ m ¢ 2 Yo x)p \y yolylp , .

where

[p(x),0"(y) ] =8(x—y),
1 1 (5.4)
[e(x),p(y) ]+ =[@'(x),p'(y)]+=0 .

Here, using ¥ defined in (2.4), we have introduced
¢ N(x)=3,¢!M,(x,1) from which follows the boundary
condition ¢'P(x)=0 for x on the walls.

Now let us discuss the calculation of the equilibrium
parameters 3’ and p'.

(1) B': There are several ways of calculating 3’ [4].
The most straightforward way is to use the conservation
of entropy in the adiabatic process. Let S(E (z)) the en-
tropy of the system which is in the equilibrium at time ¢.
It is written as a functional of the energy. Then we have
the relation

S(E(t))=S(E(t")) . (5.5)

Now the energy E (¢') at time ¢’ is regarded as a function
of E (t) and take the derivative of both sides of (5.5) keep-
ing all other parameters fixed. Then we get
_ OS(E(1))/k

9E ()
_OS(E(t'))/k OE(t')

OE(t") OE (1)

0AE
AE (1)

B(t)

=B(t") |1+

) (5.6)

where we have written E (¢')=E (t)+ AE. This is the for-
mula for the temperature shift. To get AE as a function
of E(t) can be done in principle and is a straightforward

task in a diagrammatic language if the perturbation in YV
is performed.

(2) u': The chemical potential is determined by using
the number conservation; by using the expression of ener-
gy as a functional of u and 3, we get

_ OE(t,u,B) _ QE(¢',u',B')

du oy’ ’
Assuming that 3’ has been obtained, (5.7) enables us to
calculate pu'.

As is usually done, we are allowed to change the
boundary condition to a periodic one without changing
the result of calculation as long as our system is of mac-
roscopic size. In this sense (5.2) is a reproduction of the
usual expression of the pressure in equilibrium thermo-
dynamics. Indeed, for the noninteracting case, it is easy

to show the well-known expression (for example, see
Chap. 2 of Ref. [2])

N

(5.7

372
plt)=—1s :

372
= 1f 7de , (5.8

2m
ﬁZ

eB’(e—p’)_K

where k=1 for the Bose system while k= —1 for the Fer-
mi system. Indeed, this result does not depend on which
boundary condition has been used in the calculation.

VI. NONEQUILIBRIUM CORRECTION

In this section we discuss the second and the third lines
of (4.13). First, it is easy to see that the third line should
vanish. To see this, consider the Feynman rule for
<X2(tl))eqt" Let us define the noninteracting part of our
Hamiltonian H(V (¢'),0)—pu’'N,
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Hy= 3 fio,(t') pr@, —p'N (6.1)
n
and the corresponding density matrix,
po=e T /e Mo 6.2)
Then we notice that
Tr{pyAB -+ - C}=real , (6.3)
where A,B,...,C represents cpi or ¢,. This is simply
because the contractions (propagators) are real;
P = fp(@,)8m »
+ (6.4)
‘p:‘pm._ [ 1 +Kfﬁ'(wn )]Snm ’
where
! 6.5)

fplo,)= B (fw, —u')
e —kK

Calculating (X 2(2')) eqr by perturbation in terms of in-
teraction YV, which is also real, we end up with the sum of
the terms each of which is represented by a diagram.
These terms are real except for the overall factor i com-
ing from the definition of X,(¢') given in (3.15). There-
fore (X,(t')). q 1S a pure imaginary quantity. This con-
tradicts the fact that AE is real; therefore (X,(t' )eq,,
vanishes. Noting that f,, is zero if n =n' [see (2.22)] it
is a trivial task to confirm (X,(z')),, =0 for nonin-
teracting systems. We have also confirmed this fact by a
direct calculation up to first order of V.
More generally,

(AB -+ C) oy =Tr{e FHVO=uNI 4B ... C}
=real (6.6)
if AB - C are (pi or @,. This will be used in Appendix

B.
Next we go to the last term in the second line of (4.13)
and evaluate the expression

ftwdtue(tl_tu)Xéll(tn__tl, V(tl))
I

o (@)
—ip do Xnl@

—w 27 +X21(@=0),

(6.7

where

d

L=t vt ))—f S X, V(1))e IO

(6.8)

and P denotes the Cauchy’s principal value integral. The
simplified notation Y, (w, V(t'))=x,(w) is employed in
what follows. Note that we have used the fact that
X21(t"—t',V(t")) is a function of ¢""—t' and V(¢') as is
clear from its definition (4.14). The following properties
of x,; are crucial in our argument:

Xa(@)=xy(—w), (6.9)

This is proved in Appendix B [see (B4) and (B14)]. Thus
the expression (6.7) also vanishes.
The only remaining contribution from the second and

third lines of (4.13) is thus

ftwdt“e(t’——t”)(t”~t')X','1(t"—t',V(t'))
I
« dw Xn(CU) i dx (o)
= 11
ip[” 2% - 2 do |, © )

Here the definition of y,;(w) is the same as (6.8). Taking
into account the fact that ()= —x;,( —w) [see (B6)],
the first integral on the right-hand side of (6.11) vanishes.
Now the second and third lines of (4.13) of the entire
first-order correction of nonequilibrium thermodynamics
to the equilibrium one becomes
[" arvan?yan

with

(6.12)

1 dxilw, V(')
2% do

The function Y (¢') is proved to be positive as follows.
Let us observe a well-known fact [5] that

Y(t')=

0=0

ox(w)=0 (6.13)
then we reach the conclusion that
dxle, V(1)) X1u(o)
Al mr
d(l) 0=0 w—0 ()
wXi(w)
= 1im X2 50, (6.14)
w—0 [n)

because x,,(«0=0)=0 by (B6).

We have assumed above that y})(w) is continuous at
»=0. However, strictly speaking, this property depends
on detailed form of Hamiltonian (and the dimension of
space). For example, if x{,(¢""—¢',V (¢')) has a long-time
tail as t"’— + o then Y can be negative or even negative-
ly infinite depending on the shape of the tail. Our precise
statement is thus there is one-to-one correspondence be-
tween non-negativeness of Y and the continuity of x{j(w)
at @ =0, which may be checked experimentally.

VII. FIRST-ORDER NONEQUILIBRIUM
THERMODYNAMICS

The results of the preceding section can be summarized
as follows:

AE(=— [ aVp()

40 :
+ [y, AV VYN - (7.1)

or

dE=—pdV+YVdV+ - (7.2)



1494

with positive Y. The positivity of the second term of the
right-hand side of (7.2) implies that the work done by the
movement of a rigid wall or the work exerted by the sys-
tem is minimized or maximized when the velocity of the
movement goes to zero, which is known as the principle
of maximum-minimum work. The above results provides
the proof of this theorem for thermally isolated interact-
ing quantum system up to the lowest order of nonadia-
batic change of the volume. The term YV dV represents
the excess energy stored in the system when the wall
shows the nonadiabatic movement.

From (4.14), it is a straightforward task to calculate Y7}
and Y5, by perturbation in terms of interaction V. Such a
calculation can be carried out by use of the standard di-
agrammatic rule of the nonequilibrium process [4,6,7].
From this calculation, we have found that x}; and x3)
equal to zero up to the first order of interaction Y. This
implies that Y =0 for free (ideal) gas and supports our
previous result that x5;=0 in full order.

We observe here the following important fact; Y re-
ceives nonvanishing value starting from the second order
of interaction, the very order in which the coupling con-
stant appears squared and the contribution can be posi-
tive definite. This implies that the restoration of the equi-
librium is accomplished by the scattering among particles,
which results in the redistribution of the energy supplied
(or taken out) by the moving walls. The detailed di-
agrammatic evaluation of Y is planned to be published in
a separate paper.

For the discussion of free case, we have to assume an
infinitesimally small interaction which brings the system
into the equilibrium state. Under this assumption, our
nonadiabatic expansion is justified and each coefficient of
the expansion depends on the small interaction term.
Then the following question arises: at which order of adi-
abatic expansion does the first nonzero coefficient appear
in the limit where the interaction vanishes? We do not
have the answer yet, but if the maximum-minimum prin-
ciple applies for the ideal gas, the first nonzero nonequili-
brium correction to AE has to be positive.

VIII. CLASSICAL LIMIT

The limit #—0 leads us to the classical nonequilibrium
thermodynamics for the present case. Since the limit can
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be straightforwardly taken using the well-known tech-
nique, we show only the essential steps and the resulting
expressions. Let us define the states

X, xy)=—=pl(x,) " - - @'(xy)]0)

(N=1,2,... (8.1)

,00)7

where

p(x)|0)=0, (0[0)=1. (8.2)

These states form a normalized complete set, or
(Xg - - Xpylx) o x)y)

1 ’ ’
:SNMmgﬁ(xl—XPl)'"S(XN—XPN) , (8.3)

where (x5 --*xp ) is one of the permutations of
P, Py p

(xi---xy)and 3p implies the summation over all these
permutations. Now the correspondence between the clas-
sical expression O (p,x) and the quantum operator O in
the second quantized representation [written by <pT(x)
and @(x)] is defined starting from the following identity,
which holds for any O:

x; |(x) - xylx] o xy)

#i 0
O{iaxl’

If

(%, - - xylOlx] - x}y) . (8.4)

Here O((#/i)(8/0x,), x;) is the first quantized expression
of O. We simply replace (#/i)(8/0x) inside O by p,
which leads to O (p,x) in the limit #—0. For example,
if the density matrix p is chosen for O, corresponding
classical quantity O (p,x) defined above becomes the
classical distribution function f (p,q) itself.

Using this classical correspondence to an operator, we
can show

1 1
<0>eqt'—> %‘, mﬁfdpl R dequl - +dqyf(p,q)04(p,q)=(0 234,, (#—0) , (8.5)
1
where X9(¢') and the commutator x,,(@) /% is replaced by
2
4 p.
fp.q)=exp |—B'3 ﬁ (X006 gqu— (XN, 8.7)
J
—/fézi S V(qeq)+BUN|. (8.6) X1(w)/fi—>of® (o), (8.8)
k#I(=1)

In the classical limit (%—0) the expectation value of

where @, is the classical correlation function,
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<1>1,<w)=fj’wd(t"—z')e"w"""”()??(t")X’?(t')>g}1,, )
8.9)

In this expression, X9(¢") is obtained by X%(z’) through
the Liouville time evolution formula with the volume tak-
ing fixed value ¥ (¢'). Note that from (8.5) it is easy to
see that time displacement (O)=(i/#){[H,0]) be-
comes the classical Liouville time displacement

0H, 3 o0H, 9 cl
dp; 9q;  dq; Jp; 0°‘(p’q)>‘

1

(=

i

in the limit #—0. As a result, we get the classical version
of (7.1) with

—p(V(EN=(Xt")N e, (8.10)
’ 1 d ’
Y(V(t )):EE(de)“(a)))lm:O
=1B8'®,(0) . (8.11)

Here we have assumed that ®,,(0) is finite (see the dis-
cussion at the end of Sec. VI).

IX. DISCUSSION

We have discussed and obtained the explicit formula of
the first-order nonequilibrium correction to the equilibri-
um formula AE =—pdV and have shown that it is
indeed positive in conformity with the maximum-
minimum work principle. Several comments concerning
our results are in order.

(1) Internal entropy increase. Due to the increase in the
energy by the nonadiabatic process, the internal entropy
AS increases correspondingly. It is an easy task to calcu-
late AS using our formula for AE, (6.11). The explicit
formula of AS has been given in Ref. [1], which takes the
usual form,

_ AENA(p)
AS (1) T 9.1)
where AENA(t) is the nonadiabatic part of AE (1),
AENA =Y ()V(DAV (1), 9.2)

and T (t) is the equilibrium temperature at .

(2) The term dQ or pdN. Needless to say, the none-
quilibrium thermodynamics will not become a closed
theory before all the factors are taken into account that
lead to the time dependence of the energy. As has been
stated in the Introduction, dQ or pudN depend on the
state of both the system and environment, which is con-
trolled not only by the Hamiltonian but by the initial
condition specifying the state at some initial time ¢;.
Once the initial state, i.e., the initial density matrix, is
fixed for the whole system including both the object sys-
tem and the environment, and if the time dependence of
the whole system is studied by using the Hamiltonian of
the whole system, then the expectation value of the Ham-
iltonian of the system, i.e., object system, determines dQ
which is flowing into (out of) the object system. This part
leads of course to the increase (decrease) of the entropy
besides the internal part of the entropy discussed in (1)
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above. For the term pudN we have also to consider the
subsystem using the number-conserving Hamiltonian of
the whole system with some given initial state. The in-
vestigation of the dQ or u dN term in field-theoretical ter-
minology is now underway.

(3) Time-dependent Ginzburg-Landau-type equation for
pressure. Just as in Ref. [1], we can derive the time-
dependent Ginzburg-Landau (TDGL) equation of the
pressure (X9(¢)) by performing the time-dependent
Legendre transformation from ¥ (¢) to {(X%(¢)). Howev-
er, recall here that X,(¢) in (3.10), hence X(l’(t), is defined
by the difference of the energy due to the small change of
the boundary; therefore it contains the information just
near the boundary. In the equilibrium case it is the pres-
sure of the entire system since the pressure is unique
everywhere. The local pressure in the nonequilibrium
case can best be defined by introducing the local metric
tensor g;;(x) and by defining the (energy)-momentum ten-
sor 2;(x) by varying g;(x) and then taking the limit
8;j(x)—>9;; (Kronecker delta). The derivation of the
TDGL equation for the local pressure will be an interest-
ing subject.

(4) Far from equilibrium. We emphasize here that our
results do not say anything about the nonequilibrium
correction when it is far from the equilibrium process. In
particular, the maximum-minimum work principle, or
the law of the increase of entropy, may not be true for the
highly nonadiabatic process; indeed, we know various
phenomena showing nonequilibrium ordered structure
which is apparently realized by the decrease of entropy.

APPENDIX A

In this appendix (the derivation presented in this ap-
pendix was suggested by B. Sakita, to whom we are very
thankful), another proof of (2.18) is presented which is
more concise and more general than the one given in the
text. For simplicity, we first take the noninteracting
Hamiltonian of the Bose system.

Let us introduce the Bose operator ¢(x,?) satisfying the
equal-time commutation relation

[¢(x,),6T(x',)]=8(x—x') . A1)
Using the complete set of base function ¥,(x,?) satisfying
the boundary condition and the annihilation operator ¢,
which obeys the relation (2.12), we can write

d(x,0=" Patha(x,1) . (A2)

One of the example of ¥,(x,t) is (2.4). Since ¢’s form a
complete set as operators like ¢’s, we can introduce the
wave function as

\I’(xl'"XN,t):<O|¢(X1,t)"'¢(XN,t)!\l/> . (A3)

Here the vacuum state is defined to be annihilated by ¢,,.
Let us consider the left-hand side of the Schrodinger
equation (2.2),
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iﬁ%\ll(xl c Xy D=IAS <o

Now using the following relation, which is derived from
(A1)

- x, 0= 1905, 1), H, ] (A5)
where
. t 3
H,=ifi [dx¢ (x,0)5-$(x,0) . (A6)

It is easy to see that the first term on the right-hand side
of (A4) reduces to the following expression:

Z (0'¢(x1’t) coo [f(x52),H, ] ¢(XN’t)|O>

={(0[¢p(x,,2) - - - (x;,1) -+ - p(xp, )H, W) .
(A7)

Here we have used the relation (O|H,=0. In the same
way, we utilize the relation

_ 7 =
S —Vid(x,)=[4(x;,1),Hy] , (A8)
where
ﬁZ
H=[dx¢'(x0) | ==V |$(x,1) , (A9)

and find that the right-hand side of the Schrédinger equa-
tion (2.2) becomes

a
¢(x1,t) e §¢(x,»,t) tet ¢(XNyt)
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\I/>+<O

Blxp) - $lx,0) - Bl

w) . (A4)

(Olg(xy,1) - $lxy, 1) iﬁ%lW)—(Hf—H,)NJ) =0,
(A11)
which holds for any N. In this way we arrive at
., 0 _
ifig|9)=(H,—H)I¥) . (A12)

The above arguments are easily extended to the interact-
ing Bose system. The final expression is given as follows:

ih%l\lf>=H(t)!\I/) , (A13)
with H (¢) defined by
H= [dxg'(x,0) —{%vz #(x,1)
—ifi [ dx 8'(x,0)2-g(x, 1)
+£ [dx [ dy¢'x,08"(y,0V(x,y)
X $(y, 1)(x,1) . (A14)

For the Fermi system, the same formula holds but the
commutator in (A1) should be replaced of course by the
anticommutator. As noted above, if we use the expansion
(A2) with ¢, (x,t) given by (2.4), Egs. (A13) and (A14)

2 lead to Egs. (2.17)-(2.22).
> —%v% Ol¢(xy,1) - - - Blxy, )| )
i APPENDIX B
=(0 8 JDHAW) . (A0 . " v .
(ol(x, 0 $(xy, 1) f| ) ( ) We prove several properties of xi; and x3),. Using the
Then the Schrodinger equation reduces to relation for any operator X and Y,
J
e'Xe Y=Xx +[X, Y]+%[Y,[Y,X]]-&-%[Y,[Y,[Y,X]]]-l— cee, (B1)

X5 is expanded as follows:

X =2 VN = (XKoL, X gt o

—t
#

] ' , , 1
+ X0, XY D gt 5

where H'=H(V(t'),0) and t =¢''—¢'. We have collected
the terms of even (odd) powers of (¢''—¢’) in the first
(second) line on the right-hand side. Operator H' and
X9(¢') consist of @, and @, with a real coefficient and

2
I ([[H',[H,X,t)],X(t) D eqet -

L
#

3
([[H,[H',[H X,(t)]]L, X3 ) D ege+ -+, (BD)

-

X,(¢") with a pure imaginary coefficient. Thus we notice
from (6.6) that all the expectation value in the form
( )eq appearing on the right-hand side are pure imagi-
nary. Namely, the first (second) line is the imaginary
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(real) part of 5. On the other hand, since AE () is real,
we identify x3; contained in (4.13) with the imaginary

part of x5), which is an even function of (¢""—¢’). The
odd part of x5 vanishes. Therefore,

X (t" =t V(' N=x3(—("—¢t"), V(")) (B3)
or

Xa(@)=xy(—w) . (B4)

A similar argument is true of ;. In the expression of
X11> like (B2), all the expectation values become real this
time. This is because Y} does not contain X,(¢'). Note
that X9(¢') has a real coefficient, in contrast to X,(t').
Then the imaginary part of x{) is given by the second line
of (B2), which is an odd function of (¢'—t¢’). Then x1)
appearing in (4.13) satisfies

X" =, V(' ))=—x (=" =), V(1)) (BS)
or

Xilo)=—x;(—w) . (B6)

Fin=3e "5 (m,ille™X,(the "™ X%t'))m,i )

m
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Assuming that the expression (6.11) or (6.12) has a finite
value, X;,(®) is not singular near @ =0 (see the discussion
at the end of Sec. VI). Therefore

XII(CL’:O):O . (B7)

Another way of showing the above results (B3)—(B7)
goes as follows.

First, let us define the function F (7).
F(r)=([e™X,(t"e ™ ,X0(t)])eqr - (B8)

We notice that F(7) is pure imaginary for real . It is
clear from the expansion of (B8) like (B2).

Next, we evaluate the trace in a base spanned by eigen-
states of both H' and N;

(H'—p'N)|m,i)=(E,,—uN,,)|m,i)

=K, |m,i) . (B9)

Here i denotes the label specifying the degenerate states.
Then we get

=—Se XS (myille™Xy(te ~™ X0t ] |m,i )

m

m

=F(—71),

=3e 7Kn 3 Cmyille T X, (e X ] |myi )

(B10)

where we have used the property F(7)= —F(7)* and the hermiticity of X9(¢'), X,(¢'), and H' in the second and third
lines, respectively. Observing that F(7) is analytic as a function of complex variable 7 [the term such as the step func-
tion ©(7) or 8(7) is not involved], F () is an even function of complex 7. Therefore (B3) and (B4) follow.

Similarly the function G (7) is defined by

G(r)=([e™X%t)e ™ X%t')]) eqr - (B11)
q

Since G(7) is real if 7 is real, we conclude that G(7)=—G (—7), which gives, using a similar argument as above,
(B5)-(B7).

The final task is to show Y,;(w=0)=0. For this purpose we evaluate the trace in the expression of x%(¢"' —¢',V(¢'))
as follows.

X5t =, V'N=73 e PKn > [{m, il R, (e")R(t" )| m,i ) — (m,il ROt R,(¢"")m,i )]

—(i/hNK, —K (1" —1") . , . . , .
! n T Rm T S (m, il X, (t)|n,j ) n, i1 X" ) m,i) .

Lj

p— K -—
=3 (e PKm—ePHn)e (B12)
m,n
Here we have inserted a complete set of eigenstates of H' and N. Notice that, since X9(¢’) and X, (') commute with N,
we have replaced E, —E,, with K, —K,, in the second line [8]. Then we get
1—e Fhe

=27
X21(@) 0] 7o

(B13)

S e TEns(w— (K, —K, ) /8 S (m,il Xy(t)|n,j) n, j1X0(e) m,i ) .
m,n ij
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So if 3,;{m,ilX,(t)In,j){n,jIX9(¢')Im,i} is not singu-
lar, or less singular than (K,, —K,)”!, near m =n then

Xar(@=0)=0 . (B14)

If it is singular, X,,(w=0) is expected to be nonzero and
real because 3, {m,ilX,(¢')|n,j){n,jlX(t)|m,i) is
real (due to the Hermiticity of X and X, the complex
conjugate of this quantity equal to itself as is easily seen).
Then by (4.13) and (6.7) such a case contradicts the fact
that AE is real and is safely ruled out. The property
(B14) can be confirmed in another way. Indeed, because
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of the anti-Hermiticity of the commutator
[X,(2"),X0(e)],  xn("—t, V(") [hence  also

X>1{(@=0)] is pure imaginary, which contradicts the fact
that y,;(w=0) is real. This is because, for any anti-
Hermite operator A4,

(A)ep=3e "5 S (m,il dlm,i)

is pure imaginary since 3,;{m,i| A|m,i) has the same
property.
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